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Sašo Blažič, Igor Škrjanc Member, IEEE

Abstract—In this paper, a new approach to evolving fuzzy
model identification from streaming data is given. The structure
of the model is given as a local-model network in Takagi-Sugeno
form, and the partitioning of the input-output space is based on
metrics in which these local models are defined as prototypes
of the clusters. This means that the clusters and the local
models share the same parameters; therefore, the number of
parameters of the evolving system is much lower in comparison
to similar systems of comparable complexity, and the problems of
parameter identifiability are not a particular issue. The algorithm
adds the local models in an incremental fashion and recursively
adapts the local model parameters. The proposed algorithm was
tested on three examples to demonstrate the main features. The
first example is a simple simulated example with intersecting
clusters; the second is a very-well known benchmark that treats
the Mackey-Glass time series; the third is an example that shows
the classification of the data from a laser rangefinder. These
examples show the great potential of the proposed approach in
certain applications.

Index Terms—Incremental clustering, Fuzzy C-regression clus-
tering, Stream data, Evolving fuzzy model identification.

I. INTRODUCTION

In recent years, the processing of streaming data has become
increasingly important. This is because currently the data
are generated continuously by thousands of data sources,
and include not only the data generated in factories and
processing facilities, and traffic control, but also a wide
variety of data including log files generated by customers
using mobile or web applications, e-commerce purchases,
financial trading, information from social networks, geo-spatial
services, telemetry, etc. Such data need to be processed
sequentially and incrementally on a record-by-record basis or
over sliding time windows to obtain the information about
the behavior instantaneously. This has sparked an increased
interest in the on-line identification of nonlinear models that
combine fuzzy logic and neuro-fuzzy networks, as presented,
for example, in [1]–[13]. Essentially, these methods are based
on various fuzzy clustering algorithms, but they are modified
and extended for processing the data streams. The extension
of the Gustafson-Kessel clustering algorithm for data stream
clustering is presented in [14] and [15], in [16] the recursive
method based on the Gath-Geva clustering algorithm is given,
while an evolving clustering method (ECM) is proposed in
[2]. Much attention has been given to an evolving algorithm
that adapts the structure of Takagi-Sugeno fuzzy model (eTS)

S. Blažič and I. Škrjanc are with University of Ljubljana, Faculty of
Electrical Engineering, Ljubljana, Slovenia.

[1]. The identification of a fuzzy model in general requires
the partitioning of the input-output space in the first phase
and the estimation of local-linear parameters in the second
phase. The partitioning can be done either using some a priori
knowledge or, more efficiently, by implementing a clustering
algorithm. Combining the latter with a changeable model
structure results in an evolving paradigm, in which the rule
base of the fuzzy model is updated when a new data sample
from the stream is available; the estimation of the clusters
parameters is calculated by the recursive clustering algorithm
[17] in which subtractive clustering is used as presented in
[18], [19]. The self-tuning of membership functions in which
the parameters are adjusted automatically is presented in an
extended Takagi-Sugeno model (exTS [20] and in eTS+ [21]).
This enables the detection of clusters of various shapes. The
algorithms differ from the algorithm proposed in [1] regarding
the calculation of the fuzzy covariance matrix and in the
adaptation of cluster centers.

In all the above-mentioned algorithms, the clustering is
based on the point-shaped or hyper-spherical-shaped partition-
ing of the data space. A very different approach is presented in
[22], in which a modified version of fuzzy c-means clustering
was proposed, called the fuzzy c-regression clustering (FCRM)
algorithm, which develops the clusters in the form of hyper-
planes. The FCRM algorithm groups the input-output data
into c clusters defined with c hyper-planes. These hyper-
planes represent both the premise and the consequence parts
of the rules in the identified Takagi-Sugeno model. This means
that the hyper-planes in the premise and in the consequence
part have the same parameters, which are then updated at
the same time with the incoming streaming data, [11]. The
proposed algorithm has two major problems: the sensitivity
to noise [23], [24] and the initialization problem, which may
cause the algorithm to converge to a local minimum of the
objective function [25]. The introduction of various objective
functions for a robust version of FCRM has been successfully
implemented and reported in [24], [26], and [27]. The FCRM
algorithm was applied to construct the fuzzy model in [28] and
[29]. In [30], a new FCRM clustering algorithm (NFCRMA)
is presented, which is deduced from the fuzzy clustering
objective function of FCRM with the Lagrange multiplier rule,
possessing an integrative and concise structure. The proposed
approach primarily consists of two steps: premise parameters
identification and consequent parameters identification. Some
authors attempt to employ an evolutionary computational
technique (particle swarm optimization (PSO)) to estimate the
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parameters of the consequence part, such as proposed in [26]
and [31]. In [32], an affine Takagi-Sugeno fuzzy modelling
algorithm by fuzzy c-regression model clustering is proposed,
which involves a novel cluster validity criterion to set up the
appropriate number of clusters. Fuzzy membership functions
are the crucial element that mainly affects the model structure
and modeling accuracy. In [33], a new hyperplane-shaped
fuzzy membership function is designed to match the main
requirements for T-S fuzzy model identification.

In this paper, we attempt to combine the advantages of the
FCRM: specifically, the more compact and suitable structure
for the design of Takagi-Sugeno model and the much lower
number of parameters to be estimated, together with the
evolving nature of the algorithms described before. This means
that the algorithm adds a new local model when necessary,
specifically if the measured data sample from the data stream
does not belong to the existing local models. The algorithm
then increments the number of local models and initializes the
parameters of that model in an on-line manner. The salient
features of the proposed algorithm are: 1) low number of
design parameters together with low sensitivity of operation
with respect to their value (which makes the tuning very
simple for the user); 2) low number of identified parameters
(thereby making the algorithm more robust and less sensitive
to noise in comparison with methods of similar complexity); 3)
simple one-parameter control over modelling error vs. model
complexity trade-off; 4) ability to handle linear and nonlinear
systems while keeping the model transparent by adopting
affine local models.

The paper is organized as follows. In Section II, the
nonlinear model described as local model network is briefly
introduced. In Section III, the incremental c-regression and c-
varieties clustering methods are presented in detail; how to add
a local model and how to adapt the current model parameters
are explained. In Section IV, the model prediction and model
simulation based on the proposed model with affine prototypes
are explained. In Section V, the proposed algorithm was tested
on three examples to show the main features.

II. NONLINEAR MODEL DESCRIBED AS LOCAL MODEL
NETWORK

A nonlinear system is often represented by an appropriately
weighted sum of local models of certain type. Here, we will
assume that the output of the system y can be modelled using
a local model network proposed in [34] given by

y =
m∑
j=1

µj(uuup)yj(uuu) (1)

where uuup ∈ Rq , uuu ∈ Rr, µj ∈ [0, 1] gives validity of
the respective local model output yj , i.e. µj(uuup) defines the
regions in the space of uuup where the local models are valid.
The validity function µj is constructed so that the partition of
unity is fulfilled in the convex set C that includes the whole
region of interest of uuup:

m∑
j=1

µj(uuup) = 1 ∀uuup ∈ C ⊆ Rq (2)

In the context of Takagi-Sugeno fuzzy models, q-element
vector uuup represents antecedent variables, r-element vector
uuu represents consequent variables, µj(·) define membership
functions, and m is the number of rules in the rule base. Eq.
(1) can be seen as a mapping from uuup and uuu to y. According to
the nature of the system, the variables in uuuTp = [up1, . . . , upq]
that define the partitioning of the input-output space are not
necessarily the inputs included in the regression vector uuu.

The functions yj(uuu) can take an almost arbitrary form
although linear or affine functions are often used for the sake
of simplicity. In our case, affine functions will be utilized:

yj(uuu) = θj0+θj1u1+θj2u2+. . .+θj,rur j = 1, . . . ,m (3)

where the r-element vector uuuT = [u1, u2, . . . , ur] has been
introduced. To simplify further derivations, we shall also
use the augmented vector uuuTe = [1, u1, u2, . . . , ur] and the
corresponding vector of parameters θθθTj = [θj0, θj1, . . . , θj,r].
Combining Eqs. (1) and (3) we obtain

y =

m∑
j=1

µj(uuup)uuu
T
e θθθj =

m∑
j=1

ψψψTj θθθj (4)

where the weighted augmented regression vector

ψψψTj = µj(uuup)uuu
T
e j = 1, . . . ,m (5)

has been introduced.

III. MODEL IDENTIFICATION USING AFFINE PROTOTYPES

One of the main issues when working with local model
networks is obtaining the validities of the local models based
on the current set of data stored in the vector uuup. Very
often, some prototype is defined for the characteristic data that
represent the data in the j-th local model, and the validity of
this local model is obtained as a function of the distance with
respect to the prototype. Usually, the prototype of the data
representing the j-th local model is a point in Rq . while there
are also other parameters that have to be known to calculate
the validity of the model exactly.

In contrast, data clustering is often performed in the space of
a higher dimension Rq+1, where measurements zzzT =

[
uuuTp , y

]
are depicted. This is the path also taken in this paper. Here,
linear (or better affine) functions will be used to represent
the prototypes of the clusters instead of points, which are
usually used to mark cluster centers. This means that the data
belonging to a certain local model (often also referred to as a
cluster) will be represented by a manifold in the problem space
Rq+1. The dimension of the prototype is defined by parameter
s, where 0 ≤ s ≤ q. If the cluster prototypes are represented
by points, the dimension of the manifold is s = 0: similarly,
s = 1 for straight lines, s = 2 for planes, and s > 2 for
subspaces of higher dimensions. In this paper, we will assume
that the prototypes are hyperplanes, which means that their
dimension is q or, equivalently, the prototypes that lie inside
the problem space Rq+1 have the codimension of 1.

A unique property of the proposed approach is that the
affine functions originally used for the affine local model
given by Eq. (3) also define the affine prototypes of the
clusters in the space of zzz. Consequently, the local affine model
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and the representation of the affine prototype share the same
parameters. Obviously, the original description of the system
model given by Eq. (1) also slightly modifies to

y =
m∑
j=1

µj(uuu, y)yj(uuu) =
m∑
j=1

µj(uuu, y)uuuTe θθθj (6)

and the dimension q becomes r. Therefore, only r will be used
in the remainder of the paper. Note that not only the input uuu but
also the output y is used when calculating the distance from
the prototype hyperplane, meaning that the output is needed
when validity µj is being calculated.

The validity of local models is calculated based on the
distance from the current data to the affine prototypes. The
distance is then used as proposed in fuzzy c-means clustering
algorithm [35]. It is based on the minimization of c-means
objective function. Solving the minimization problem leads to
the validities of the respective local models at time instant k:

µjk =

(
d2jk

m∑
i=1

(
1
d2ik

) 1
η−1

)−1
j = 1, . . . ,m (7)

where d2jk defines the distance between the measurement at
time k

zzzk =
[
uuuTk , yk

]T
= [u1k, . . . , urk, yk]

T (8)

and the j-th local prototype, and η is a design parameter that
describes the interpolation between the prototypes (the value
of 2 usually gives good results). It is simple to show that the
local model validities fulfil the conditions for the partition of
unity

µjk ∈ [0, 1] ∀j, k (9)

m∑
j=1

µjk = 1 ∀k (10)

In this paper, two different ways of calculating the distance
d2jk will be proposed. Consequently, two versions of the model
identification algorithm will be obtained. In the first case, d2jk
is simply the square of the difference between the current
system output yk and the prediction based on the j-th local
affine function:

d2jk =
(
yk − uuuTekθθθj

)2
j = 1, . . . ,m (11)

In the second version of the algorithm, the orthogonal
distance between the data point zzzk from Eq. (8) and the j-
th cluster prototype is used. The orthogonal distance is the
projection of the vector (zzzk − vvvj) to the normal vector of the
j-th prototype defined as hhhj , where vvvj stands for the center or
any other point on the j-th cluster prototype. The projection
can be calculated using a scalar product as follows

d2jk =

(
(zzzk − vvvj)T · hhhj

)2
hhhTj hhhj

j = 1, . . . ,m (12)

By taking into account the fact that the orthogonal vector to
the j-th cluster prototype is described by using the local model
parameters as hhhj = [−θj1, . . . ,−θjr, 1]

T and vvvTj · hhhj = θj0

which follows from Eq. (3), the following description of the
distance is obtained

d2jk =

(
yjk − uuuTekθθθj

)2
1 +

∑r
s=1 θ

2
js

j = 1, . . . ,m (13)

Any of the distances given by Eqs. (11) or (13) can be used
to calculate the distances of the current measurement zzzk to the
existing affine prototypes, which in turn gives the validities of
the local models defined by Eq. (7). Thus, two variants of
model identification for the estimation of system parameters
can be derived. In both cases, either an offline or an online
algorithm can be implemented.

When dealing with data streams, an online method that con-
tinuously updates model parameters needs to be implemented.
In our case, a weighted recursive least square algorithm is
adopted, which consists of the following steps [36]:

1) The weighted estimation error ejk at time instant k, the
error between the current weighted output yjk = µjkyk
and the weighted model output based on old parameter
estimate ψψψTjkθθθj,k−1, is calculated as follows

ejk = yjk −ψψψTjkθθθj,k−1 = µjk
(
yk − uuuTekθθθj,k−1

)
j = 1, . . . ,m (14)

2) The innovation gain vectorKKKjk at time instant k is given
in the following way

KKKjk = PPP j,k−1ψψψjk

(
γ +ψψψTjkPPP j,k−1ψψψjk

)−1
j = 1, . . . ,m (15)

where PPP j,k−1 is the estimate-error covariance matrix at
time instant (k − 1), and 0 < γ ≤ 1 stands for the
forgetting factor, which is to be selected by the user
(this value is usually between 0.95 and 1).

3) The estimate-error covariance matrix PPP jk is calculated
as

PPP jk =
1

γ

(
I−KKKjkψψψ

T
jk

)
PPP j,k−1 j = 1, . . . ,m (16)

4) The current model parameters θθθj are updated:

θθθjk = θθθj,k−1 +KKKjkejk j = 1, . . . ,m (17)

Note that the steps of the above algorithm refer to the
parameters of the j-th local model. Various versions of the
algorithm make different choices regarding which local models
to update at a certain time instant (either all local models or
only the winning-cluster local model) or the local clusters with
validity exceeding some predefined threshold. A general rule is
that only models with sufficient excitation should be updated
if problems such as parameter drift are to be avoided. The
analysis of the above algorithm shows that the update of the
models with low validity is very small due to the quadratic
dependence on µjk, which can be seen by introducing Eqs.
(14) and (15) into (17) and taking into account Eq. (5):

θθθjk = θθθj,k−1 +
µ2
jk

(
yk − uuuTekθθθj,k−1

)
γ +ψψψTjkPPP j,k−1ψψψjk

PPP j,k−1uuuek (18)
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Note that the algorithm given in this paper is not confined
to the choice of the online parameter-estimation method
presented here. One can rely on some other recursive-least-
squares-based algorithm for fuzzy models or even apply an
algorithm utilizing a different cost function.

This on-line method is not an incremental one, i.e. the
number of local models is kept fixed regardless of the stream-
ing data. For this reason, the method is very sensitive to the
initialization. The inherent property of the algorithm is that the
size of a prototype is infinite; therefore, the algorithm tends to
merge collinear clusters, despite the fact that the actual clusters
are well separated. The algorithm can also converge towards
false partitions if the clusters have significantly different
volumes.

IV. INCREMENTAL C-REGRESSION AND C-VARIETIES
CLUSTERING METHOD

The algorithm presented in Section III enables the identifi-
cation of the local-model network given by Eq. (6). Its main
drawback is that it requires the knowledge of the number
of clusters, which should be defined in advance. It is also
difficult to cope with systems in which the conditions change,
since the structure of the model is fixed. For this reason, two
variants of incremental models are proposed. These algorithms
can be seen as an incremental c-regression and an incremental
c-varieties clustering algorithm. They only differ in the calcu-
lation of the distance between new measurements and existing
local model prototypes.

The proposed incremental algorithm starts completely from
scratch, without any data and any local models. When the data
stream starts, measurements usually arrive at a certain sample
rate. After the arrival of a new measurement zzzk, one on the
following actions has to be taken:

• If the measurement lies “close” to an existing local model
prototype, it is decided that the measurement belongs to
the corresponding cluster. Consequently, the parameters
of the corresponding local model are updated following
the procedure given in Section III.

• If the measurement is “far” from the existing clusters
but not “very far” (meaning that it is not regarded as an
outlier), the data are put in the buffer. The content of the
buffer is analyzed after each update of the buffer in order
to either use this data to construct a new local model or
simply discard all these data if the informational content
is not adequate.

• If the measurement lies “very far” from the existing
clusters, it is decided that it is probably an outlier, and
the data are not stored anywhere.

In the above items, soft terms are used for specifying the
size of the distance with respect to the existing clusters. The
meaning of “close”, “far”, etc. will be quantified based on
one of the distances d2jk given by Eqs. (11) or (13). When
associating a measurement at time k with a j-th cluster, we
take into account the distance d2jk between the measurement
and the local model hyperplane at this particular time. The

winning cluster is the one with the lowest distance; its index
will be denoted with w (1 ≤ w ≤ m)

w = arg min
1≤j≤m

d2jk (19)

The mean value of the past distances d2j is kept for each
cluster. It is updated recursively upon the addition of a new
measurement to the winning cluster. At time k, only d2j of the
winning cluster is updated, as proposed in [37]:

d2wk =
kw − 1

kw
d2w,k−1 +

1

kw
d2wk (20)

where kj stands for the current number of samples in the j-th
cluster (kw is the number of samples in the winning cluster),
and index of d2w is the current time. Initialization at time t = 0:
d2j,0 = 0 for all clusters.

A. Keeping unclassified data in the buffer

Probably the most crucial part of an incremental system is
the decision regarding how and when a new local model (or
cluster) is to be added. When a new measurement zzzk arrives,
the distances d2jk(j = 1, 2, . . . ,m) from existing local models
are calculated. If this distance is considerably higher than the
mean of the previous distances of the data in the cluster, i.e.,

d2wk > κmind2w,k−1 (21)

the decision is made that this particular point (or piece of
data) will not be associated with any of the existing clusters.
Although being a relative (dimensionless) quantity by its
definition, Eq. (21), κmin still has to be tuned in order to
achieve better results. This can be done offline on a smaller
batch of data. We have tested the proposed approach on many
different data sets, and good results are usually obtained if
κmin is in the range of 1 to 100. Note that due to being a
relative quantity this parameter cannot be very large or very
small, but still it is the only design parameter with significant
impact on the performance of the algorithm. In fact, the user
can control the trade-off between the achieved modelling error
and the number of the local models quite easily by tuning
κmin.

However, to prevent false clusters from being introduced
based on outliers and also to prevent large transients in the
beginning of the cluster lifetime, the data not associated with
any local models are not used immediately to initialize a new
local model. Rather, they are kept in the buffer. When it is
decided that the data in the buffer can form a new local model,
a new model is initialized based on the data in the buffer.
Several criteria can be implemented for this, but we chose
the one that requires that the data in the buffer span a unique
hyperplane of dimension r:

y = uuuTe θθθJ = θJ0 + θJ1u1 + θJ2u2 + . . .+ θJ,rur (22)

This means that at least (r + 1) measurements are needed in
the buffer before this condition is met. Additional criteria can
also be applied. For practical purposes, it is not recommended
to form a new model based on the nonconsecutive patches of
data. Our implementation: if the difference in time index of
the consecutive measurements in the buffer exceeds a certain
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value (in our case 3), the old batches are flushed while the
current batch can be kept.

It has to be noted that the data go through the buffer and the
above check also in the case of starting the procedure from
scratch. During the starting phase, the data are collected until
the first local model can be formed.

B. Adding the prototypes

When a decision is made to construct a new local model,
the number of local models m is increased by 1, and all the
parameters defining the new local cluster have to be initialized.
The parameter vector of the local affine model that also
defines the cluster prototype can be obtained from Eq. (22)
as θθθm = θθθJ using the well-known least square method for
linear systems. The initialization of other cluster parameters
(PPPm, km, d2m) is also straight-forward.

C. Handling the outliers

It has to be noted that the samples that fulfill condition
given by Eq. (21) can lie very far from all the existing clusters.
These samples may be outliers and, therefore, the associated
data are not used or stored. The condition for classifying
a measurement as an outlier is that the following condition
similar to Eq. (21) is met:

d2wk > κmaxd2w,k−1 (23)

where κmax > κmin is a design parameter with the recom-
mended value of 2κmin. If the condition given by Eq. (23) is
met, the current sample is not taken into account for adapting
the current prototype or adding a new prototype, nor it is stored
in the buffer.

The pseudo-code of the incremental fuzzy c-regression
and c-varieties algorithm in on-line identification is given in
Algorithm 1. Note that in this algorithm all the local models
(j = 1, 2, . . . ,m) can be updated in Line 16, or just the
winning cluster local model (j = w). The latter option often
produces better results.

V. MODEL PREDICTION AND MODEL SIMULATION BASED
ON THE PROPOSED MODEL WITH AFFINE PROTOTYPES

The model obtained with the proposed methodology can
easily be used for classification in which each new data sample
carries both the information on the input vector uuu and the
output y. The classification can, therefore, be performed based
on the lowest distance with respect to the affine prototypes.

In the case of model prediction and model simulation, the
output y is not known. Actually, it is the goal of model pre-
diction and model simulation to calculate the model output y
based on the known model input vector uuu. We will denote this
calculated (predicted/simulated) model output ŷ to distinguish
it from the measured one (denoted y). Simulation or prediction
is usually done in a loop running in time. Past measurements
(yk−i, i > 0) are included in uuuk in the calculation of a
predicted output ŷk while past calculated outputs (ŷk−i, i > 0)
are used during the calculation of a simulated output ŷk.

In the case of model prediction and/or model simulation, a
problem arises due to the fact that the input data stream only

Algorithm 1 Pseudo-code of the incremental c-regression or
c-varieties clustering method in on-line identification

1: Definition of the parameter η, the forgetting factor γ, the
parameters κmin and κmax.

2: Initialization of the number of clusters (m = 0).
3: for all k do
4: Computation of the distances djk, j = 1, . . . ,m. For

c-regression method

d2jk =
(
yjk −ψψψTjkθθθj

)2
, j = 1, . . . ,m

and for c-varieties

d2jk =

(
yjk −ψψψTj θθθj

)2
1 +

∑r−1
s=1 θ

2
js

, j = 1, . . . ,m

5: Determine the cluster with lowest distance (if m 6= 0):

w = arg min
j
d2jk

6: if (m == 0) or (d2wk > κmind2w,k−1) and (d2wk ≤
κmaxd2w,k−1) then

7: Put the current measurement zzzk to the buffer.
8: if the measurements in the buffer span a unique

hyperplane of dimension r then
9: Add a new local model (increase m by 1) and

initialize local model parameters θθθm,PPPm, km, d2m.
10: Empty the buffer.
11: else if the difference of time indexes of consecutive

measurements in the buffer exceeds 3 then
12: Empty the buffer.
13: end if
14: else if d2wk ≤ κmind2w,k−1 then
15: Computation of the new validities for j = 1, . . . ,m

µjk =

(
d2jk

m∑
i=1

(
1

d2ik

) 1
η−1

)−1
16: Update of local model parameters :

ejk = yjk −ψψψTjkθθθj,k−1

KKKjk = PPP j,k−1ψψψjk

(
γ +ψψψTjkPPP j,k−1ψψψjk

)−1
PPP jk =

1

γ

(
I−KKKjkψψψ

T
jk

)
PPP j,k−1

θθθjk = θθθj,k−1 +KKKjkejk

17: Update of the parameters for the winning cluster:

d2wk =
kw − 1

kw
d2w,k−1 +

1

kw
d2wk

d2wk = d2w,k−1 j = 1, 2, . . . ,m, j 6= w

18: else
19: The measurement is probably an outlier, and it is

disregarded.
20: end if
21: end for
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directly defines the input vector uuu, while the output ŷ is to be
determined by the model (see Eq. 6)

ŷ = uuuTe

m∑
j=1

µj(uuu, ŷ)θθθj (24)

where model validities µj (j = 1, 2, . . .m) depend on dis-
tances whose calculation need both uuu and ŷ. Consequently,
direct calculation of ŷ is not possible. Some solutions to this
problem exist:
• The use of distance to clusters based on input vectors.

In this approach, the validities of the local models are
calculated only taking into account the input vector uuu:

ŷ = uuuTe

m∑
j=1

µj(uuu)θθθj (25)

Each measurement zzzT =
[
uuuT , y

]
is associated with a

particular (let us assume j-th) local model (or cluster)
during the proposed clustering in the training phase
(described in Section IV). Only the input-vector part uuu of
these measurements can be collected in separate sets Rj
(j = 1, 2, . . .m) for the purpose of model prediction or
model simulation. When, during the prediction/simulation
phase, a new input vector uuu arrives to be mapped to
ŷ, the distance from uuu to the members of the sets Rj
(j = 1, 2, . . . c) is calculated.
Note that a very suitable distance measure in this case is
a Mahalanobis distance. If each set Rj of input vectors is
described only by its mean uuuj and its covariance matrix
ΣΣΣuuuj , the square of the Mahalanobis distance to the current
input vector uuuk can be computed easily:

D2
jk = (uuuk − uuuj)T

(
ΣΣΣuuuj
)−1

(uuuk − uuuj) (26)

It is also very simple to recursively adapt the mean and
the covariance matrix during the training phase [38].
The last step before the actual calculation of ŷ using
Eq. (25) is to map the Mahalanobis distances D2

jk from
Eq. (26) to model validities µj . This can be done either
using a winner takes all principle (the validity of the rule
associated with the lowest distance D2

jk is 1, the others
are 0) or mapping D2

jk to µj using the same formula as
in Eq. (7).

• The use of an iterative procedure. The pre-
dicted/simulated output ŷk can also be obtained itera-
tively. First, an initial approximation of the predicted
output ŷ0k is chosen. This can be done either by selecting
a previous output (ŷ0k = ŷk−1), or relying on the linear
model of the system (given as a single fixed parameter
vector θθθlin) using ŷ0k = uuuTe θθθlin. This initial output ŷ0k
is used for obtaining distances to the linear prototypes
(using Eqs. 11 or 13) and model validities (using Eq. 7)
which in turn result in a model output using Eq. (24).
This model output is the next approximation ŷ1k of the
output for which we are searching. It can be used to run
a new iteration of the described algorithm. This procedure
repeats until the output converges.

There are some remarks concerning the above approaches:

• The first approach is quite simple. While it does not
require the elements of the sets Rj to be stored, the mean
values uuuj and the covariance matrices ΣΣΣuuuj of the elements
of the sets Rj have to be known, but they can be cal-
culated recursively during training (identification phase)
[38]. It has to be emphasized that this approach uses affine
prototypes of infinite size during the identification phase
and finite compact clusters during prediction/simulation
phase.

• The second approach relies on an iterative procedure
whose convergence needs to be analyzed. Model validi-
ties fulfill the conditions for partition of unity (Eqs. 9 and
10), and it is easy to show that ŷ in Eq. (24) is always
upper-bounded and lower-bounded at the fixed value of
uuue:

min
j∈Im

(
uuuTe θθθj

)
≤ uuuTe

m∑
j=1

µj(uuu, ŷ)θθθj ≤ max
j∈Im

(
uuuTe θθθj

)
(27)

where Im = {1, 2, . . . ,m} is a set containing the first m
integers.
It is also easy to check that Eq. (24) holds for ŷ = uuuTe θθθj
and any j from Im. This means that all these values
represent the equilibria for ŷ of the iterative algorithm.
The boundedness of ŷ and existence of equilibria for ŷ do
not guarantee that the above iterative procedure results in
a convergent series, but the guaranteed boundedness of ŷ
is sufficient for our needs.

VI. EXAMPLES

The proposed algorithm was tested on three examples to
demonstrate the main features. The first example is a simple
simulated example with intersecting clusters, the second is a
benchmark that treats the Mackey-Glass time series, and the
third is an example that shows the classification of the data
from a real laser rangefinder.

One of the most attractive features of the proposed approach
is the low number of design parameters; the approach is also
quite insensitive to most of parameters. In all our experiments,
the parameters η was fixed to 2. The system is also very robust
with regards to the forgetting factor, which was kept at γ =
0.98 during all tests. The only parameter that was important
was κmin, while κmax was always set to 2κmin.

A. Simple example with intersecting clusters

This example treats a very simple simulated problem in
which there are two processes running in parallel. The first
process is described by

yt = xt + nt (28)

and the second by
yt = −xt + nt (29)

where xt is the input series and yt the output series while the
noise nt is a Gaussian noise with zero mean and the standard
deviation of 0.05. Moreover, some outliers are added to the
data (corrupting 3% of the data). The data stream consists of
the (x, y) pairs, for which the input x is generated randomly
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Fig. 1. The data stream: blue circles indicate the samples from process 1,
given by Eq. (28); the red crosses indicate the samples generated by process
2 given by Eq. (29)

on the [−1, 1] interval; then one of the processes given by Eqs.
(28) and (29) is randomly chosen to obtain the output y. The
data stream is depicted in Fig. 1. The outliers are surrounded
by squares. It is shown that at each particular time t a sample
is chosen randomly from one of the two processes with the
randomly generated input x. If this data stream is treated by
the proposed algorithm (κmin = 10), two cluster prototypes
are obtained as depicted in Fig. 2. The affine prototypes at the
end of the experiments are shown by thick lines, the color of
the samples shows the corresponding cluster, and ellipses show
the cluster area with the 90 % probability. Black dots show the
measurements not associated with any of the clusters, and the
measurements surrounded by squares depict the outliers. We
can see that all the outliers far from the clusters have been
treated correctly (they were not associated with any of the
clusters). If a measurement has a lot of noise or an outlier is
close to a cluster, it is hard for the algorithm to make a clear
distinction. In conclusion, we can say that the algorithm is able
to cope with measurements generated by different processes
running in parallel and that the algorithm is robust to outliers.

B. Mackey-Glass time series

The Mackey-Glass time series is a chaotic time series
generated by the differential equation:

ẋ(t) =
0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t) x(0) = 1.2, τ = 17 (30)

This continuous nonlinear system has quite often been simu-
lated and sampled in the literature and has become a certain
benchmark in the area of evolving systems. In this example, we
have been working with a dataset that was created previously
and worked on by many researchers. Therefore, we used the
same problem setting as in [2]:

• the input vector uuu includes the samples xt−18, xt−12,
xt−6, and xt;

-1 -0.5 0 0.5 1
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-1

-0.5

0

0.5

1

Fig. 2. The clusters obtained in the simple example with intersecting clusters:
the two clusters are shown with blue and red; also shown: affine prototypes
with thick lines and ellipses with 90% probability

Method Rules RMSE Rules
mean

RMSE
mean Sum

DENFIS [2] 58 0.0628 1.4545 1.0248 2.4793
DENFIS [2] 27 0.0920 0.6771 1.5013 2.1784
exTS [39] 10 0.0754 0.2508 1.2304 1.4812
eTS+ [37] 10 0.0892 0.2508 1.4556 1.7064
eTS [1] 113 0.0217 2.8339 0.3541 3.1880
rGK [40] 58 0.0481 1.4545 0.7849 2.2395
rGK [40] 10 0.0862 0.2508 1.4066 1.6574
rFCM [41] 10 0.1039 0.2508 1.6955 1.9462
rFCM [41] 58 0.0702 1.4545 1.1455 2.6001
rFCM [41] 100 0.0285 2.5078 0.4651 2.9729
eFuMo [40] 21 0.0753 0.5266 1.2288 1.7554
eFuMo [40] 41 0.0316 1.0282 0.5157 1.5439
eFuMo [40] 68 0.0224 1.7053 0.3655 2.0709
InFuR (κmin = 50) 22 0.0392 0.5517 0.6397 1.1914
InFuR (κmin = 80) 18 0.0583 0.4514 0.9514 1.4028
InFuR (κmin = 100) 14 0.0757 0.3511 1.2353 1.5864

TABLE I
RESULTS FOR MACKEY-GLASS TIME SERIES.

• the output of the model is the 85-steps-ahead prediction
of the output: yt = xt+85;

• 3000 data points (t ∈ [201, 3200]) were used for the
training/identification;

• 500 data points (t ∈ [5001, 5500]) were used for the
prediction.

The results from other methods are taken from [1], [2], [39],
[37], [40] and [41], and are shown in Table I. The proposed
method InFuR was parameterized as follows: η = 2, γ = 0.98,
κmin ∈ {50, 80, 100}, and κmax = 2κmin.

It can be seen that for the Mackey-Glass time-series the
presented method InFuR gives results that are very comparable
to the other methods, especially to those with a reasonable
number of clusters. The best results are obtained with the
eTS method according to which, together with 113 local
models, the RMSE is equal 0.0217. With the InFuR method,
the RMSE of 0.0392 is obtained with only 22 local models.
When κmin increases to 80, the number of rules decreases
to 18 while RMSE increases to 0.0583. Increasing κmin
further to 100, results in a lower number of rules (14) while
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RMSE also increases (0.0757). Taking into account only the
examples from the literature with similar numbers of local
model (DENFIS, 27, rGK, 10, rFCM, 10, eFuMo, 21), the
best RMSE is 0.0753. The proposed method shows the best
performance with 22 local models together with RMSE of
0.0392. In Table I, the results are also shown in a relative
manner, according to which the number of rules was divided
by the mean value of rules in all the examples (39.9), presented
in the Rules/mean column, and the value of RMSE divided
by mean value of RMSE values (0.0613), as RMSE/mean
in next column. The sum of both values is given in the
last column, denoted as Sum. This result indicates that the
proposed approach shows a very good trade-off between the
model error and model complexity.

C. Laser rangefinder measurements

The laser rangefinder (LRF) is a sensor that uses a laser
beam to determine the distance to an object. LRFs are of-
ten used in mobile robotics, primarily for localization pur-
poses, map building, or simultaneous localization and mapping
(SLAM) [42]. The robot’s pose can be estimated by fusing the
data from the LRF and the information from the known map
of the environment. This is often done using simple geometric
features that are extracted from the data obtained from the
LRF. The simplest features are straight lines. The first task
in the localization or mapping procedure is, therefore, the
extraction of existing lines. This task generally requires two
phases: the data clustering phase, in which the points forming a
line are isolated, and the phase of a line-parameter estimation.

The proposed approach is very suitable for this task, since
it puts the points on a straight line to a cluster. The affine
prototype directly defines a straight line. In this example, we
are working on the data from the LRF that is shown in the
raw form in Fig. 3. The measurements are shown with crosses;
the connecting line defines the sequence of measurements.
The design parameters were chosen as: η = 2, γ = 0.98,
κmin = 2.5, and κmax = 2κmin. The resulting clusters after
this stream of data has been processed are shown in Fig. 4,
in which individual clusters (straight line segments in this
case) are shown with different colors. The sequence in the
legend shows the sequence of cluster initialization, while the
numbers in the legend define the number of measurements in
the clusters. Also shown are ellipses corresponding to the data
in the clusters (they define the area where the sample belong
to a particular cluster with 90% probability). Note also the
black dots; the measurements not included in any cluster. The
algorithm deleted these data from the buffer.

The proposed algorithm has been compared to the
Gustafson-Kessel (GK) clustering algorithm [43], which is a
clustering algorithm based on the assumption that the cluster
prototype is a point. Since the distances are calculated using
the covariance matrix of the cluster, an arbitrary ellipsoidal
shape of the cluster can be obtained. When calculating fuzzy
memberships, the boundaries of the clusters can take almost
arbitrary shapes, which makes this clustering algorithm a
powerful one. One drawback of the algorithm is that the
number of clusters needs to be known in advance. In our
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Fig. 3. 2D measurements from the laser rangefinder

case, the algorithm has been run with various numbers of
clusters. It turned out that, in the case of a large number of
assumed clusters, the algorithm always encounters the problem
of the covariance matrix of a cluster becoming singular.
Therefore, we did an experiment with the highest number of
assumed clusters that produced relevant results. This number
was m = 13 and the results are shown in Fig. 5. The results in
Fig. 5 can be directly compared to the results in Fig. 4. Both
algorithms performed quite well but we need to underscore
three important shortcomings of the GK algorithm:
• The GK algorithm needs to have the number of clusters

available a priori. If a too low number is selected, we
face the problem depicted in Fig. 6 in which only m =
8 clusters are assumed. Obviously, the algorithm cannot
find a very good solution.

• The GK algorithm also suffers from numerical problems
that always arise in the case of a too large m, as already
mentioned.

• The algorithm is based on random initialisation, which
means that different final clusters are in general obtained
in different runs of the algorithm.

VII. CONCLUSION

The proposed approach of clustering in the on-line identi-
fication of various processes from the data stream has shown
a great potential. The concept of affine prototypes works
very well in applications in which the data lie along several
segments of different hyperplanes. However, the approach
can be used successfully in any application with significant
nonlinearity. There are also other benefits of the proposed
approach. Since the cluster definition and the local models
share the same parameters, the number of parameters of the
evolving system is lower in comparison to similar systems
of comparable complexity. This means that the problems of
parameter identifiability are not a particular issue. Moreover,
the number of design parameters that have to be chosen is
quite low, and we can mostly work with their “default” values.
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Fig. 4. Clusters obtained after processing the LRF data with the proposed
approach
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Fig. 5. Clusters obtained after processing the LRF data with the GK algorithm
(the number of assumed clusters is 13)

This means that good results are usually obtained without
any parameter tweaking, which is certainly something that a
practical user would appreciate. The problem of model output
prediction is also tackled in this paper. Very often, the validity
of local models depends on the current system output, which
is not available during simulation/prediction. Two approaches
to alleviate this problem are suggested in this paper: the use
of distance to clusters based on input vectors, and the use of
an iterative procedure.
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